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Q-CURVATURE FLOW ON S4

Andrea Malchiodi & Michael Struwe

Abstract

We study a natural counterpart of the Nirenberg problem,
namely to prescribe the Q-curvature of a conformal metric on the
standard S4 as a given function f . Our approach uses a geometric
flow within the conformal class, which either leads to a solution
of our problem as, in particular, in the case when f ≡ const,
or otherwise induces a blow-up of the metric near some point of
S4. Under suitable assumptions on f , also in the latter case the
asymptotic behavior of the flow gives rise to existence results via
Morse theory.

1. Introduction

Let M be a closed four-manifold (compact without boundary) with
metric g. If Ricg denotes the Ricci Tensor of (M, g) and Rg the scalar
curvature, the Q-curvature Qg of M is defined by the expression

(1) Qg = − 1

12

(

∆gRg − R2
g + 3|Ricg|2

)

.

(The above definition is not universally adopted and in other texts may
differ by a factor 2.)

Similar to the Gauss curvature on a surface, the Q-curvature on a
four-manifold is related to a conformally invariant operator and its in-
tegral gives information on the topology of the manifold.

Indeed, if Σ is a closed surface with metric g0 and Gauss curvature
K0, given a conformal metric g = e2wg0 on Σ, the Laplace-Beltrami
operator transforms according to the rule

(2) ∆ = ∆g = e−2w∆0,

where ∆0 = ∆g0
. Throughout, we use the analysts’ sign convention (so

that ∆ is negative definite). The Gauss equation

(3) −∆0w + K0 = Kge
2w
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then relates the Gauss curvature Kg of the metric g to the curvature K0

of g0 and implies the invariance of the total scalar curvature integral
∫

Σ
Kg dµg =

∫

Σ
Kge

2wdµg0
=

∫

Σ
K0 dµg0

under conformal changes of the metric; in fact, by the Gauss-Bonnet
formula

(4)

∫

Σ
Kg dµg = 2πχ(Σ),

the total scalar curvature is already determined by the topology of the
surface.

In complete analogy with (3), as shown by Branson-Ørsted [6], in
four space dimensions the Q-curvature of a metric g = e2wg0 is related
to the Q-curvature Q0 of the background metric g0 via the equation

(5) Pg0
w + 2Q0 = 2Qge

4w,

where Pg0
is the Paneitz operator in the metric g0, introduced in [25].

For any given g the operator Pg acts on a smooth function ϕ on M via

(6) Pg(ϕ) = ∆2
gϕ − div

((

2

3
Rgg − 2Ricg

)

dϕ

)

.

Similar to (2), the Paneitz operator is conformally invariant in the sense
that

(7) Pg = e−4wPg0

for any conformal metric g = e2wg0. Finally, if we denote as W the
Weyl tensor of M , then, similar to (4) there holds

(8)

∫

M

(

Qg +
|W |2

8

)

dµg = 4π2χ(M);

see [4]. In particular, on a locally conformally flat manifold where W ≡
0 we obtain the exact analogue of (4).

As in the two-dimensional case of equation (3), in the context of
equation (5) it is natural to ask whether on a given 4-manifold (M, g0)
there exists a conformal metric of constant Q-curvature. On the other
hand, given a smooth function f on M , one may ask whether there
exists a conformal metric having f as its Q-curvature. In the case of
(3) for conformal metrics on S2, this is the famous Nirenberg’s problem.

A partial affirmative answer to the first question is given by Chang-
Yang [12] under the condition k0 =

∫

M Q0 dµ0 < 8π2 and assuming
that Pg is a positive operator whose kernel only consists of the constant
functions. In view of a result of Gursky [19], the latter hypothesis is
satisfied whenever k0 > 0 and provided (M, g0) is of positive Yamabe
type; see also [13], Theorem 3.1, and the Remarks following. The same
result was later rederived by Brendle [7] via a flow approach, again in the
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“subcritical” case when k0 < 8π2, which by Gursky’s work [19] precisely
rules out the case when (M, g0) is conformal to the standard sphere. In
fact,

∫

S4 QgS4
dµgS4

= 8π2, and blow-up phenomena may occur. The
result of Chang-Yang has been extended recently by Djadli-Malchiodi
[17] to the case in which the kernel of Pg only consists of the constant
functions and k0 is not a positive integer multiple of 8π2. Again, the
last condition is used to rule out blow-up phenomena, see [23].

As for the analogue of Nirenberg’s problem on S4, since QgS4
≡ 3, by

(5) this is equivalent to finding a solution u of the equation

(9) PgS4
u + 6 = 2fe4u

for a given function f on S4, where PgS4
= ∆2

gS4
− 2∆gS4

. The problem

is variational; solutions can be characterized as critical points of the
functional

(10) Ef (u) =

∫

S4

(

uPgS4
u + 4QgS4

u
)

dµgS4
− 3 log

(
∫

S4

fe4udµgS4

)

on H2(S4), where
∫

S4 ϕdµgS4
denotes the average of any function ϕ

on S4. However, as is common in geometric problems, this functional
fails to satisfy standard compactness conditions like the Palais-Smale
condition.

Furthermore, the Chern-Gauss-Bonnet formula (8) and identities of
Kazdan-Warner [20] type impose obstructions to the existence of so-
lutions of (9). In fact, since the Weyl tensor vanishes for any metric
conformal to gS4 , equation (8) takes the form

(11)

∫

S4

Qg dµg = 8π2

and there cannot be a solution of (9) when f ≤ 0. Moreover, upon
integrating by parts as in [12], p. 205, one obtains the identity

(12)

∫

S4

〈∇Qg,∇xi〉gS4
dµg = 0, 1 ≤ i ≤ 5,

where (xi)i=1,...,5 are the restrictions of the coordinate functions of R
5

to S4. It follows that no function of the form f = ψ ◦ xi, where ψ is
monotone on [−1, 1], can be the Q-curvature of a conformal metric g on
S4. Thus the study of (9) is rather delicate.

Recently, Wei-Xu, [31] (see also [8] and the references in these pa-
pers), by combining blow-up analysis and degree theory, proved the
following result.

Theorem 1.1. Suppose f : S4 → R is positive with only non-

degenerate critical points with Morse indices ind (f, p) and such that
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∆gS4
f(p) 6= 0 at any such point p. In addition, assume that

(13)
∑

{p : ∇f(p)=0,∆g
S4

f(p)<0}

(−1)ind (f,p) 6= 1.

Then there exists a solution of (9).

The aim of this paper is to analyze equation (9) by means of the
Q-curvature flow and to extend the results of Brendle [7] for this flow
to the critical case when (M, g0) is conformal to the standard sphere.
Our approach will be similar to the treatment of the two-dimensional
Hamilton-Ricci flow in [29] and the flow approach to Nirenberg’s prob-
lem developed in [30]; in particular, we again shall see the fundamental
role that the Kazdan-Warner identity (12) plays in preventing blow-up
and in proving exponential convergence of the flow when f ≡ const.;
see Theorem 4.1. On the other hand, for a prescribed curvature func-
tion f 6≡ const., we argue by contradiction, and show, thereby closely
following [30], that whenever (9) does not admit a solution then, as
t → ∞, conformal metrics evolving under the Q-curvature flow concen-
trate in a nearly spherical shape around points p(t) ∈ S4, t > 0, whose
motion follows a pseudo-gradient flow for f . A detailed analysis, more-
over, shows that the flow (p(t))t>0 converges to a critical point p of f
where ∆gS4

f(p) < 0, which is the reason why only such critical points
contribute in Theorem 1.1. Theorem 1.1 then may be deduced from
Morse theory; in fact, Theorem 1.1 is a special case of the following re-
sult, which has counterparts in [27] and in [22] for the scalar curvature
problem on Sn.

Theorem 1.2. Suppose f : S4 → R is positive with only non-

degenerate critical points with Morse indices ind (f, p) and such that

∆gS4
f(p) 6= 0 at any such point p. Let

(14) mi = #{p ∈ S4;∇f(p) = 0, ∆gS4
f(p) < 0, ind (f, p) = 4 − i}.

Then, if there is no solution with coefficients ki ≥ 0 to the system of

equations

(15) m0 = 1 + k0, mi = ki−1 + ki, 1 ≤ i ≤ 4, k4 = 0,

there exists a solution of (9).

Observe that in contrast to the usual applications of Morse theory
we will be dealing with a flow that increases (rather than decreases) the
value of f ; therefore the index of a critical point p of f (counting the
number of negative eigenvalues of the Hessian) has to be substituted
by its complement i = 4 − ind (f, p) = ind (−f, p). Obviously, this
distinction is of no consequence for the statement of Theorem 1.1.

An analogous problem involving the scalar curvature in dimensions
greater than 2 is the Yamabe problem. In [28] and, finally, [9], [18],
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convergence of the Yamabe flow is established for arbitrary initial data
in dimensions 3, 4 and 5, thereby heavily relying on the positive mass
theorem of general relativity. It should be of considerable interest to
obtain analogous results for the Q-curvature flow in dimensions greater
than four, as well.

Acknowledgement. Most of this work was carried out when the first
author visited ETH in Zürich. He is very grateful to this institution
for the kind hospitality. He has also been supported by M.U.R.S.T. un-
der the national project “Variational methods and nonlinear differential
equations”.

2. The flow

Let gS4 be the standard metric on S4. Any conformal metric g can
be written as g = e2ugS4 for some smooth function u on S4. Let f ∈
C∞(S4) be a given positive function. For g0 = e2u0gS4 satisfying

(16) vol (S4, g0) =

∫

S4

dµg0
=

∫

S4

dµgS4
=

8

3
π2,

we define an evolution of conformal metrics g(t), t ≥ 0, whose Q-
curvatures approximate (a positive constant multiple of) the prescribed
curvature function f .

To define the flow, let g(t) be given by g(t) = e2u(t)gS4 , where u solves
the equation

(17) ut =
du

dt
= αf − Q,

with initial data u(0) = u0. Here Q = Qg denotes the Q-curvature of
g = g(t), given by

(18) Q =
1

2
e−4u(PgS4

u + 6) on S4,

and α is chosen in such a way that

(19) α

∫

S4

f dµ =

∫

S4

Qdµ = 8π2

for all t ≥ 0, where dµ = dµg = e4udµgS4
. Lemma 6.2 in [29] may easily

be adapted to this setting to show, together with the work of Brendle
[7], that the initial value problem (17), (19) has a unique, global, smooth
solution on S4 as well; see Section 3.2 below.

In view of (19) we have

d

dt

(
∫

S4

dµ

)

= 4

∫

S4

utdµ = 4

∫

S4

(αf − Q)dµ = 0,

and the initial normalization (16) implies the identity

(20) vol (S4, g) =

∫

S4

dµ =
8

3
π2
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for all t ≥ 0.
Moreover, the functional Ef is non-increasing along the flow defined

by (17), (19). Indeed, let

ū =

∫

S4

u dµgS4
=

3

8π2

∫

S4

u dµgS4

denote the mean value of u, etc., and let

E(u) =

∫

S4

(

uPgS4
u + 4QgS4

u
)

dµgS4

=

∫

S4

(|∆u|2gS4
+ 2|∇u|2gS4

+ 12u)dµgS4

so that

Ef (u) = E(u) − 3 log

(
∫

S4

fe4udµgS4

)

.

Lemma 2.1. Let u be a smooth solution of (16)–(19). Then one has

d

dt
Ef (u) = −4

∫

S4

|αf − Q|2 dµ ≤ 0.

Proof. Using (17)–(19), we obtain

d

dt
Ef (u) = 2

∫

S4

(PgS4
u + 2QgS4

)ut dµgS4
− 12

∫

S4

fut dµ
/

∫

S4

f dµ

= 4

∫

S4

(Q − αf)ut dµ = −4

∫

S4

|αf − Q|2 dµ.

q.e.d.

Recall the following analogue of Onofri’s [24] inequality, due to Beck-
ner [2]. The present interpretation appears as formula (4.1′′) in the work
of Chang-Yang [12], who also give an instructive new proof of Beckner’s
inequality.

Proposition 2.2. For any u ∈ H2(S4) there holds

log

(
∫

S4

e4udµgS4

)

≤ 1

3
E(u).

Thus, for a metric which satisfies (20), we have the uniform lower
bound

Ef (u) ≥ −3 log

(

max
S4

f

)

and Lemma 2.1 implies the estimate

(21)

∫ ∞

0

∫

S4

|αf − Q|2 dµ dt ≤ 2

3
π2(Ef (u0) + 3 log(max

S4
f)) < ∞.



Q CURVATURE PROBLEM 7

In particular, for a suitable sequence tl → ∞ with corresponding metrics
gl = g(tl), we obtain

(22)

∫

S4

|Ql − α(tl)f |2 dµgl
→ 0 (l → ∞).

Therefore, if gl converges to a metric g∞ with Q-curvature Q∞, then
Q∞ = α∞f . In particular, we encounter this situation when f ≡ const.;
see Section 4.

On the other hand, if gl does not converge along any sequence tl →
∞, we observe a concentration behavior similar to [30], whose precise
analysis in Section 5 will lead us to the proof of Theorem 1.2.

Notation. All norms we use are taken with respect to the stan-
dard spherical metric gS4 , unless otherwise specified. For brevity in the
following we let ∆S4 = ∆gS4

, etc. The letter C represents a generic
constant which may vary from line to line (and also within the same
line), occasionally numbered for clarity.

3. Asymptotics

In this section we describe the asymptotic behavior of the solution
u(t) of (17) and the corresponding metric g(t) when t → ∞.

3.1. Normalized flow. Similarly to [29], p. 260 f. for the case of S2,

given a smooth family of metrics t 7→ g(t) = e2u(t)gS4 there exists a
smooth family of conformal diffeomorphisms t 7→ Φ = Φ(t) : S4 → S4,
normalized with respect to rotations of S4, so that, letting h = Φ∗g, we
have

(23)

∫

S4

x dµh = 0 for all t.

Here the points of S4 are identified with their image in R
5 through the

standard immersion. We can write h as h = e2vgS4 , where

(24) v = u ◦ Φ +
1

4
log(det(dΦ)).

By conformal invariance there holds

(25) E(v) = E(u);

see for instance [31], Lemma 2.2. Moreover by (24) we have
(26)

vol (S4, h) =

∫

S4

e4vdµS4 =

∫

S4

e4udµS4 = vol (S4, g) for all t ≥ 0.

Therefore, if u(t) solves (17), (19) with initial data satisfying (16), from
(20), Lemma 2.1, and Proposition 2.2 we deduce the uniform energy
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bounds
(27)

0 ≤ E(v) = E(u) = Ef (u)+3 log

(
∫

S4

f dµ

)

≤ Ef (u0)+3 log

(

max
S4

f

)

for u and v.
The bounds on v can be improved by using the following result of

Wei-Xu [31], Theorem 2.6, which extends a previous theorem of Aubin
[1] to higher dimensions. A similar result was obtained by Brendle [8],
Proposition 2.2; Brendle’s result, however, requires the a-priori bound
[8], Lemma 2.1, which is not available here.

Proposition 3.1. There exists a constant a < 1/3 such that for every

v ∈ H2(S4) with corresponding metric h = e2vgS4 satisfying (23) there

holds

log

(
∫

S4

e4vdµS4

)

≤ a

∫

S4

vPS4v dµS4 + 4

∫

S4

v dµS4 .

Consequently, the normalized family (v(t))t>0 is bounded in H2(S4).

Lemma 3.2. For a smooth solution u of (17), (19), (20) and the

corresponding normalized flow there holds

(28) sup
t

‖v(t)‖H2(S4) ≤ C.

Moreover, for any σ ∈ R we have

(29) sup
t

∫

S4

e4σv dµS4 ≤ C(σ).

The bounds in (28) and (29) depend only on E(v).

Proof. From Proposition 3.1 we obtain

(30) a

∫

S4

vPS4v dµS4 + 4

∫

S4

v dµS4 ≥ 0.

Hence we can estimate

(

1

3
− a

)
∫

S4

(

|∆S4v|2 + 2|∇v|2S4

)

dµS4 =

(

1

3
− a

)
∫

S4

vPS4v dµS4

=

∫

S4

(

1

3
vPS4v + 4v

)

dµS4 −
(

a

∫

S4

vPS4v dµS4 + 4

∫

S4

v dµS4

)

≤ 1

3
E(v) ≤ C.

(31)

Moreover, from Jensen’s inequality and (26) it follows that

4v :=

∫

S4

4v dµS4 ≤ log

(
∫

S4

e4v dµS4

)

= 0,
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whereas from (30) we get

0 ≤
(

a

∫

S4

vPS4vdµS4 + 4

∫

S4

vdµS4

)

= aE(v) + (4 − 12a)v.

Hence from (27) we conclude

(32) |v| ≤ C.

Finally, from (31), (32) and Poincaré’s inequality it follows that

‖v‖L2(S4) ≤ ‖v − v‖L2(S4) + ‖v‖L2(S4) ≤ C‖∇v‖L2(S4) + C ≤ C.

This implies (28). Finally, (29) is a consequence of Proposition 2.2,
applied to the function σv, and (28). q.e.d.

From (24) one finds

(33) vt = ut ◦ Φ +
1

4
e−4vdivS4(ξe4v),

where ξ = (dΦ)−1 dΦ
dt . We can bound ξ in terms of ut, as follows.

Differentiating (23) with respect to t and using (33), we find

0 =
d

dt

(
∫

S4

x dµh

)

= 4

∫

S4

x vt dµh(34)

= 4

∫

S4

x ut ◦ Φ dµh +

∫

S4

x divS4(ξe4v) dµS4

= 4

∫

S4

x ut ◦ Φ dµh −
∫

S4

ξ dµh.

Let G = Möb+(4) denote the finite-dimensional Lie group of oriented
conformal diffeomorphisms of S4. We identify an element ξ ∈ TidG with
the vector field d

dtΦ(t)|t=0 on S4, where Φ(t) = expid(tξ) is the family
of conformal diffeomorphisms generated by ξ. We then define the map

X : TidG ∋ ξ 7→
∫

S4

ξdµh ∈ R
5.

By reasoning as in [29], p. 260, one finds that for all conformal metrics
h which are uniformly equivalent to gS4 , X has full rank. Moreover, X
is invertible with bounded inverse on the subspace generating normal-
ized conformal diffeomorphisms. In particular, from (34) we obtain the
uniform estimate

(35) ‖ξ‖2
L∞ ≤ C

∫

S4

|ut ◦ Φ|2 dµh = C

∫

S4

|αf − Q|2 dµ.

As explained in [29], p. 260, the constant C in (35) is uniform for all
normalized metrics h satisfying (29) with uniform constants C = C(σ)
for σ = 2 . By Lemma 3.2 and (27) this, in particular, is the case for all
metrics h arising from smooth solutions u of (17), (19), (20) satisfying
a uniform bound Ef (u0) ≤ β0 for some β0 ∈ R.
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3.2. Global existence. From Lemma 2.1 and (35) we obtain the fol-
lowing estimate, which is similar to [29], Lemma 6.2, or [30], Lemma
3.3.

Lemma 3.3. For any T > 0 and any smooth solution u of (16)–(19)
there holds

4 sup
0≤t<T

∫

S4

|u(t)| dµS4 ≤ sup
0≤t<T

∫

S4

e|4u(t)| dµS4 < ∞.

Proof. The argument is completely analogous to the proof of [30],
Lemma 3.3. q.e.d.

Combining Lemma 3.3 with (27), we obtain a locally uniform bound
in time for u(t) in H2(S4). Global existence of the flow then follows as
in the work of Brendle [7].

3.3. Curvature evolution. We now derive the evolution equations for
the Q-curvature and the L2-norm of the flow speed. From (17) and (18)
we obtain

Qt =
dQ

dt
=

1

2

d

dt

(

e−4u(PS4u + 2QS4)
)

(36)

= −4utQ +
1

2
Put = −4Q(αf − Q) +

1

2
P (αf − Q),

where P = Pg = e−4uPS4 . Differentiating (19) in time, we find

(37) αt

∫

S4

fdµ = 4α

∫

S4

(Q − αf)fdµ.

Hence (36) also yields

d

dt

(
∫

S4

|Q − αf |2dµ

)

(38)

=

∫

S4

(2(Q − αf)(Qt − αtf) − 4(Q − αf)3)dµ

= −
∫

S4

(Q − αf)P (Q − αf) dµ + 8

∫

S4

Q(Q − αf)2 dµ

− 4

∫

S4

(Q − αf)3dµ − 4π2(αt/α)2,

where
∫

S4

(Q − αf)P (Q − αf) dµ

=

∫

S4

(

|∆S4(Q − αf)|2 + 2|∇(Q − αf)|2S4

)

dµS4 .
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3.4. Curvature decay. In this subsection we prove that the decay in
(22) is indeed uniform as t → ∞.

Lemma 3.4. For a smooth solution u of (16)–(19) there holds
∫

S4

|Q − αf |2 dµ → 0 as t → ∞.

Proof. Let v(t) be the normalized flow introduced in Section 3.1, and
let h = e2vgS4 . Also denote as Φ = Φ(t) the Möbius transformations on
S4 such that h = Φ∗g. Note that Qh = Qg ◦ Φ. We also let fΦ = f ◦ Φ.

By the geometric invariance of the Paneitz operator, from (38) we
derive

d

dt

(
∫

S4

|Qh − αfΦ|2dµh

)

+ 4π2(αt/α)2

(39)

= −
∫

S4

(Qh − αfΦ)Ph(Qh − αfΦ) dµh + 8

∫

S4

Qh(Qh − αfΦ)2dµh

− 4

∫

S4

(Qh − αfΦ)3dµh

= −
∫

S4

(

|∆S4(Qh − αfΦ)|2 + 2|∇(Qh − αfΦ)|2S4

)

dµS4

+ 8α

∫

S4

fΦ(Qh − αfΦ)2dµh + 4

∫

S4

(Qh − αfΦ)3dµh.

Given ε0 > 0, by (22) there exist arbitrarily large numbers t0 such that

(40)

∫

S4

|Qh − αfΦ|2dµh =

∫

S4

|Q − αf |2dµ < ε0 at t = t0.

Fix such a number t0 and choose t1 ≥ t0 such that

(41) sup
t0≤t<t1

∫

S4

|Qh − αfΦ|2dµh ≤ 2ε0.

From (19) it follows that

(42)
3

maxS4 f
≤ α(t) = 3

(
∫

S4

f dµ

)−1

≤ 3

minS4 f
.

Hence for t0 ≤ t < t1 we find

‖Qh‖L2(S4,h) ≤ ‖Qh − αfΦ‖L2(S4,h) + α‖fΦ‖L2(S4,h)

≤
√

2ε0 +
√

24π
maxS4 f

minS2 f
= C(f).

From (29) we deduce that

PS4v + 6 = 2Qhe4v

is bounded in Lp(S4) for any p < 2. Standard elliptic theory then
yields that v(t) is bounded in W 4,p(S2) for any p < 2 and hence also in
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L∞(S4). Therefore we may improve the previous result and conclude
that, in fact, v(t) is bounded in H4(S4). In particular, with a uniform
constant C we have

(43) C−1gS4 ≤ h ≤ CgS4 ,

and from the Sobolev’s embedding H1(S4) →֒ L4(S4), we obtain

∫

S4

|Qh − αfΦ|3dµh ≤ C‖Qh − αfΦ‖L2(S4,h)‖Qh − αfΦ‖2
L4(S4)

≤ C‖Qh − αfΦ‖L2(S4,h)‖Qh − αfΦ‖2
H1(S4)

≤ C‖Qh − αfΦ‖L2(S4,h)

∫

S4

(|∇(Qh − αfΦ)|2S4 + |Qh − αfΦ|2)dµS4

≤ C0‖Qh − αfΦ‖L2(S4,h)

·
(

∫

S4

|∇(Qh − αfΦ)|2S4 dµS4 +

∫

S4

|Qh − αfΦ|2dµh

)

.

(44)

If we now choose ε0 > 0 so that 8ε0C
2
0 ≤ 1, from (39) and (44) for

t0 ≤ t ≤ t1 we conclude

d

dt

(
∫

S4

|Qh − αfΦ|2dµh

)

(45)

≤ (8α max
S4

f + 2)

∫

S4

|Qh − αfΦ|2dµh ≤ C1

∫

S4

|Qh − αfΦ|2dµh,

where C1 = 2+24 maxS2 f/minS4 f . The same estimate, of course, also
holds in the original coordinates for the functions u and f instead of v
and fΦ. Integrating from t0 to t, for any t ∈ [t0, t1[ we then obtain

∫

S4

|Q − αf |2dµ ≤
∫

S4

|Q − αf |2dµ|t=t0 + C1

∫ ∞

t0

∫

S4

|Q − αf |2dµdt.

(46)

By (21), the right hand side is smaller than 2ε0 if t0 is sufficiently large
and satisfies (40). Then (41) and hence also (46) will be valid for every
t ≥ t0. Finally, letting t0 → ∞ suitably, we obtain

lim sup
t→∞

∫

S4

|Q − αf |2dµ

≤ lim inf
t0→∞

(
∫

S4

|Q − αf |2dµ|t=t0 + C1

∫ ∞

t0

∫

S4

|Q − αf |2dµdt

)

= 0,

proving the assertion. q.e.d.

3.5. Concentration-compactness. The next lemma, which can be
proved as in [7], Proposition 1.4, gives a first characterization of the
asymptotic behavior of sequences of functions (ul)l whose Q-curvatures,
given by equation (18), are bounded in L2(S4, gl).
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Lemma 3.5. Let (ul)l be a sequence of smooth functions on S4 with

associated metrics gl = e2ulgS4, l ∈ N. Suppose that vol (S4, gl) = 8
3π2

and ‖Qgl
‖L2(S4,gl) ≤ C for some uniform constant C. Then, either a

subsequence (ul)l is bounded in H4(S4), or for every sequence l → ∞
we can find a subsequence (relabelled ) and points p1, . . . , pI ∈ S4 such

that for every r > 0 and any i ∈ {1, . . . , I} there holds

(47) lim inf
l→∞

∫

Br(pi)
|Ql|dµl ≥ 4π2,

where µl = µgl
, Ql = Qgl

. In the latter case a subsequence (ul)l either

converges in H4
loc(S

4 \{p1, . . . , pI}) or ul → −∞ locally uniformly away

from p1, . . . , pI as l → −∞.

As in [30], Lemma 3.5, the previous result may be sharpened con-
siderably if we assume L2-convergence of the Q-curvatures associated
with (ul)l to some smooth limit function Q∞ > 0. By Lemma 3.4, this
assumption is satisfied by any sequence (u(tl))l, where u(t) solves (17),
(19) and where tl → ∞ as l → ∞.

Lemma 3.6. Let (ul) be as in Lemma 3.5. In addition, suppose that

we have ‖Qgl
− Q∞‖L2(S4,gl) → 0 as l → ∞ for some smooth positive

function Q∞ on S4. Also let hl = Φ∗
l gl = e2vlgS4 be the associated

sequence of normalized metrics as in Section 3.1. Then, up to selection

of a subsequence, either

i) ul → u∞ in H4(S4), where g∞ = e2u∞gS4 has Q-curvature Q∞,

or

ii) there exists p ∈ S4 such that

(48) dµgl
⇀

8

3
π2δp as l → ∞

weakly in the sense of measures, and

hl → gS4 in H4(S4), Qhl
→ 3 in L2(S4).

In the latter case, Φl converges weakly in H2(S4) to the constant map

Φ∞ ≡ p.

Proof. We can apply Lemma 3.5. If (ul)l is bounded in H4(S4), the
metrics gl are uniformly equivalent to the standard one and Ql → Q∞

in L2(S4). From elliptic regularity results and (18), we get convergence
ul → u∞, gl → g∞ in H4(S4).

If, on the other hand, concentration occurs in the sense of Lemma 3.5,
we now show that this leads to the behavior described in ii). Choose
pl ∈ S4 and rl > 0 such that

(49) sup
p∈S4

∫

Brl
(p)

|Ql|dµl =

∫

Brl
(pl)

|Ql|dµl = 2π2.
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By (47) we have rl → 0; in addition, we may assume that pl → p as
l → ∞.

Let Φ̃l : S4 → S4 be conformal diffeomorphisms mapping the upper
hemisphere S4

+ = {x5 > 0} into Brl
(pl) and taking the equatorial sphere

∂S4
+ to ∂Brl

(pl). Consider the sequence of functions ũl : S4 → R defined
by

(50) ũl = ul ◦ Φ̃l +
1

4
log(det(dΦ̃l)).

Then these functions solve the equation

PS4 ũl + 2QS4 = 2Q̃le
4ũl ,

where Q̃l = Ql ◦ Φ̃l.
By the last statement of Lemma 3.5 and our choice of pl, rl, and (49),

we find that ũl → ũ∞ in H4
loc(S

4 \ {S}), where S is the south pole of

S4. In addition, there holds Q̃l → Q∞(p) almost everywhere as l → ∞.
Using now the map

Ψ(z) =
1

1 + |z|2 (2z, 1 − |z|2), z ∈ R
4,

and defining

ûl = ũl ◦ Ψ +
1

4
log(det(dΨ)),

we obtain a sequence ûl : R
4 → R converging in H4

loc(R
4) to a function

û∞ which solves the equation

(51) PR4 û∞ = ∆2
R4 û∞ = 2Q∞(p)e4û∞ in R

4.

Moreover, by Fatou’s lemma, û∞ satisfies

(52)

∫

R4

e4û∞ dx ≤ lim inf
l→∞

∫

R4

e4ûl dx =
8

3
π2.

The solutions of (51)-(52) have been classified in [21] and only the
following two possibilities may occur. Either û∞ is of the form

(53) û∞ = log
2λ

1 + λ2|x − x0|2
− 1

4
log

(

1

3
Q∞(p)

)

for some λ > 0, x0 ∈ R
4, or for some a > 0 there holds

(54) −∆R4 û∞(x) → a as |x| → ∞.

By the maximum principle for −∆R4 and (51), in the latter case we
even have −∆R4 û∞(x) ≥ a everywhere on R

4. Following the method in
[26], we rule out (54).

In fact, assuming (54), for any fixed number L and sufficiently large
l we have

(55)

∫

BL(0;R4)
(−∆R4 ûl) dx ≥ ω3

8
aL4,
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where ω3 is the 3-dimensional volume of the standard S3. Scaling back
to S4 (recall that the dilation factor is rl), with a uniform constant
C0 > 0 we obtain

(56)

∫

BLrl
(pl)

(−∆S4ul) dµS4 ≥ C0ar2
l L

4,

provided l ≥ l0(L).
On the other hand, the function (−∆S4ul) satisfies the equation

(57) −∆S4(−∆S4ul) + 2(−∆S4ul) = 2
(

Qle
4ul − QS4

)

on S4.

If we denote as G(·, ·) the Green’s function of the operator (−∆S4 + 2)
on S4, by the maximum principle we have

(−∆S4ul)(x) ≤ 2

∫

S4

G(x, y)Ql(y)e4ul(y)dµS4(y)

for almost every x ∈ S4. Since G has the asymptotic growth

(58) G(x, y) ∼ 1

2ω3

1

|x − y|2 for |x − y| → 0,

by Fubini’s theorem for any p ∈ S4 and any r > 0 we find
∫

Br(p)
(−∆S4ul)(x)dµS4(x)

≤ C

∫

Br(p)

(
∫

S4

Ql(y)e4ul(y)
1

|x − y|2 dµS4(y)

)

dµS4(x)

≤ C

∫

S4

Ql(y)e4ul(y)

(

∫

Br(y)

1

|x − y|2 dµS4(x)

)

dµS4(y)

≤ Cr2‖Qle
4ul‖L1(S4,gS4 ) = Cr2‖Ql‖L1(S4,gl)

≤ Cr2‖Ql‖L2(S4,gl).

In view of the uniform upper bound on ‖Ql‖L2(S4,gl) implied by our
hypotheses, upon applying the last inequality with p = pl and r = Lrl

we then obtain the estimate
∫

BLrl
(pl)

(−∆S4ul)dµS4 ≤ C1r
2
l L

2

with a uniform constant C1, which contradicts (56) when L is sufficiently
large.

Hence (53) holds and û∞ arises from the stereographic projection of
S4 onto R

4, with

(59)

∫

R4

Q∞(p)e4û∞dµR4 = 8π2.

Recalling our assumption that

‖Ql − Q∞‖L2(S4,gl) → 0,
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then with error o(1) → 0 as l → ∞ for any r > 0 in view of (11) we find

8π2 =

∫

R4

Q∞(p)e4û∞dz ≤
∫

Br(p)
Q∞ dµl + o(1) ≤

∫

S4

Q∞ dµl + o(1)

≤
∫

S4

(Ql + |Ql − Q∞|) dµl + o(1) ≤
∫

S4

Ql dµl + o(1)

= 8π2 + o(1).

It follows that p is the only concentration point of the sequence (gl)l

and that

(60) dµl ⇀
8

3
π2δp, Q∞(p)dµl ⇀ 8π2δp as l → ∞,

proving the assertion (48).
In addition, it follows that Φl converges almost everywhere to the

constant map Φ∞ ≡ p. Since Φl is a conformal diffeomorphism, we
have

∫

S4

(

|∆S4Φl|2 + 2|∇Φl|2S4

)

dµS4 = C

for all l ∈ N and some constant C. Indeed, Φl may be written as the
composition Ψ◦δl ◦π of the stereographic projection π from some point,
which we may take to be the north pole of the sphere, a dilation δl in
R

4 and the map Ψ = π−1 introduced earlier. The previous bound then
follows from writing

∫

S4

(

|∆S4Φl|2 + 2|∇S4Φl|2
)

dµS4 =

∫

S4

ΦlPS4ΦldµS4

=

∫

R4

|∆R4(Ψ ◦ δl)|2dx =

∫

R4

|∆R4Ψ|2dx < ∞,

using conformal and dilation invariance.
Hence a subsequence of (Φl)l converges weakly in H2(S4) to Φ∞ ≡ p.

By (60), as l → ∞ we also have

‖Q∞ ◦ Φl − Q∞(p)‖L2(S4,hl) = ‖Q∞ − Q∞(p)‖L2(S4,gl) → 0,

and, consequently,

‖Qhl
− Q∞(p)‖L2(S4,hl) = ‖Qhl

− Q∞ ◦ Φl‖L2(S4,hl) + o(1)

= ‖Ql − Q∞‖L2(S4,gl) + o(1) → 0,

where o(1) → 0 as l → ∞. Hence we can apply our previous reasoning
to the sequence vl and the corresponding metrics hl. Since vl satisfies
the condition (23), concentration in the sense of (60) is impossible.
Therefore a subsequence vl → v∞, hl → h∞ in H4(S4) as l → ∞, where
h∞ = e4v∞gS4 has Q-curvature Q∞(p) = 3. Finally, since all metrics hl

satisfy (23), this is true also for h∞, which then must coincide with gS4 .
The proof is complete. q.e.d.
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From Lemmas 3.4 and 3.6 we can get a neat characterization of the
asymptotic behavior of the flow (u(t)) in the case of divergence. For
t ≥ 0 let

S = S(t) =

∫

S4

x dµ =

∫

S4

Φ dµh

be the center of mass of the metric g(t). For h near gS4 the point S
approximately is given by

p = p(t) =

∫

S4

Φ dµS4 .

For convenience, we extend f as f(p) = f(p/|p|) for p ∈ B1(0; R5),
|p| ≥ 1/2.

Lemma 3.7. Suppose the equation Qg = f has no solution in the

conformal class of gS4. Suppose u(t) solves (16)–(19), and let v(t) be

the corresponding normalized flow. Then, as t → ∞, one has v(t) → 0,

h(t) = e2v(t)gS4 → gS4 in H4(S4) and uniformly, and Qh(t) → QS4 = 3

in L2(S4). Furthermore, ‖Φ(t) − p(t)‖L2(S4) → 0, and consequently

‖f ◦ Φ(t) − f(p(t))‖L2(S4) → 0, α(t)f(p(t)) → 3.

Proof. Assuming the contrary, for a suitable sequence tl → ∞ we
have

lim inf
l→∞

(‖h(tl) − gS4‖H4(S4) + ‖Φ(tl) − p(tl)‖L2(S4)) > 0.

By Lemmas 3.4 and 3.6, there exists a subsequence tl → ∞ such that
u(tl) → u∞, gl = e2u(tl)gS4 → g∞ = e2u∞gS4 in H4, and α(tl) → α. By

Lemma 3.4 then the metric α
1

2 g∞ has Q-curvature f , contradicting our
assumption on f . This proves the first assertions. Finally, by (19) and
Hölder’s inequality we have

(61) 3 − αf(p) = α

∫

S4

(f ◦ Φ − f(p)) dµh → 0 as t → ∞,

which concludes the proof. q.e.d.

Now define

(62) F2(t) =

∫

S4

|αf − Q|2 dµ =

∫

S4

|αfΦ − Qh|2 dµh

and

G2(t) =

∫

S4

(Q − αf)P (Q − αf) dµ(63)

=

∫

S4

(Qh − αfΦ)Ph(Qh − αfΦ) dµh

=

∫

S4

(

|∆S4(Q − αf)|2 + 2|∇(Q − αf)|2S4

)

dµS4
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=

∫

S4

(

|∆S4(Qh − αfΦ)|2 + 2|∇(Qh − αfΦ)|2S4

)

dµS4 .

Lemma 3.8. Suppose that either f ≡ const. or the equation Qg = f
has no solution in the conformal class of gS4. Then with error o(1) → 0
as t → ∞ we have

d

dt
F2 = −(1 + o(1))G2 + (24 + o(1))F2 as t → ∞.

Proof. From (39), (44), and Lemma 3.4 we deduce

d

dt
F2 ≤ −G2 + 8α

∫

S4

fΦ(αfΦ − Qh)2 dµh + o(1)(G2 + F2)

= −(1 + o(1))G2 + (8α + o(1))f(p)F2

+ 8α

∫

S4

(fΦ − f(p))(αfΦ − Qh)2 dµh.

This finishes the proof when f ≡ const. Otherwise, by Lemma 3.7 we
have αf(p) → 3. Moreover, from the Sobolev’s embedding H1 →֒ L4

and Lemma 3.7, we deduce
∣

∣

∣

∣

α

∫

S4

(fΦ − f(p))(αfΦ − Qh)2 dµh

∣

∣

∣

∣

≤ C‖fΦ − f(p)‖L2‖αfΦ − Qh‖2
L4

≤ o(1)‖αfΦ − Qh‖2
H1 ≤ o(1)(F2 + G2),

which proves the assertion. q.e.d.

4. The case f ≡ const

We first turn our attention to the analogue of the uniformization
problem, that is, the case when f ≡ const. With no loss of generality we
may assume that f ≡ QS4 = 3. The condition (19) then implies that
α = 1 for all t > 0. Moreover, Lemmas 3.4 and 3.6 imply convergence
of the normalized metrics

(64) h(t) → gS4 in H4(S4) as t → ∞.

Indeed, for any sequence tl → ∞ either we have divergence of (g(tl)) and
hence h(tl) → gS4 in H4, or g(tl) → g∞ in H4, where g∞ has constant
Q-curvature and again h(tl) → gS4 in H4 as l → ∞. Our aim is to
prove the following result.

Theorem 4.1. Suppose that g0 = e2u0gS4 satisfies (16), and let f ≡
3. Then the flow (17), (19) converges exponentially fast to a metric

g∞ = e2u∞gS4 of constant Q-curvature Q∞ ≡ QS4 = 3 in the sense that

‖u(t) − u∞‖H4 ≤ Ce−δt for some constants C and δ > 0.



Q CURVATURE PROBLEM 19

4.1. Spectral decomposition. Let (ϕg
i )i∈N0

be a basis of eigenfunc-
tions, orthonormal in L2(S4, g), for ∆ = ∆g with eigenvalues λg

0 = 0 <
λg

1 ≤ λg
2 ≤ . . ., solving the equation

−∆ϕg
i = λg

i ϕ
g
i , i ∈ N0.

Similarly, we define ϕh
i , ϕi = ϕ

gS4

i with corresponding eigenvalues λh
i

and λi = λ
gS4

i , i ∈ N0. It is well-known that

λ0 = 0 < λ1 = λ2 = λ3 = λ4 = λ5 = 4 < λ6 = 10 ≤ . . . ;

see for instance [3], Proposition C.I.1. Clearly there holds λg
i = λh

i and

(64) implies λh
i → λi as t → ∞. The eigenfunctions can be chosen in

such a way that ϕh
i = ϕg

i ◦ Φ and ϕh
i → ϕi smoothly as t → ∞, for all

i ∈ N0. Moreover, if we let Λg
i , Λ

h
i , Λi = Λ

gS4

i denote the eigenvalues of
Pg, etc., by the results in [16] one has

(65) Λg
i = (λg

i )
2 + 2λg

i .

In terms of ϕg
i , ϕh

i the functions αf−Q, αfΦ−Qh may be decomposed
as

αf − Q =
∑

i≥0

βiϕg
i , αfΦ − Qh =

∑

i≥0

γiϕh
i ,

respectively, with

βi =

∫

S4

(αf − Q)ϕg
i dµg =

∫

S4

(αfΦ − Qh)ϕh
i dµh = γi.

By the normalization (19) it follows that β0 = 0. In particular, with
error o(1) → 0 as t → ∞ one finds

(66) G2 =
∑

i≥0

Λg
i |βi|2 ≥ Λg

1

∑

i≥0

|βi|2 = (Λ1 + o(1))F2 = (24 + o(1))F2.

Let x = (x1, . . . , x5) denote the coordinate functions in R
5 restricted

to S4. Then we may choose ϕi =
√

15
8π2 xi for i = 1, . . . , 5. Define also

(67) bi =

∫

S4

xi(αfΦ − Qh) dµh, i = 1, . . . , 5.

By (64), up to the factor
√

15
8π2 and up to an error of order o(1)‖αf −

Q‖L2(S4,g), the vectors b = (b1, . . . , b5) and β = (β1, . . . , β5) coincide.

Also let B =
√

15
8π2 b.
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4.2. Decay of B. For f ≡ QS4 = 3, we can estimate b1, . . . , b5 via the
Kazdan-Warner identity. Indeed, using (12) together with the relation

(68) −∆S4xi = 4xi,

and observing that α ≡ 1, for i = 1, . . . , 5 upon integrating by parts we
find that

bi =

∫

S4

(Qh − QS4)xi dµh =

∫

S4

(Qh − QS4)〈∇xi,∇v〉S4 dµh.

From (64) then it follows that with error o(1) → 0 as t → ∞

|bi| =

∣

∣

∣

∣

∫

S4

(Qh − QS4)〈∇xi,∇v〉S4 dµh

∣

∣

∣

∣

(69)

≤ CF2(t)
1/2‖v(t)‖H1 = o(1)F2(t)

1/2.

Proof of Theorem 4.1. We divide the proof into three steps. We show
first the decay of F2, then the decay of v, and finally we control the
Möbius maps Φ(t).

i) In view of (69) we can improve (66) to obtain

G2 ≥ (Λg
6 + o(1))

∑

i≥0

|βi|2 = (Λ6 + o(1))F2.(70)

Taking advantage of the “spectral gap” between Λ1 and Λ6, from Lemma
3.8 for sufficiently large t we then infer the estimate

d

dt
F2(t) < −δF2(t)

for some uniform constant δ > 0, and it follows that

(71) F2(t) ≤ Ce−δt

for all t ≥ 0 with some constant C.

ii) We can now show exponential decay of v. Observing that
∫

S4

(e4v − 1) dµS4 =

∫

S4

dµh −
∫

S4

dµS4 = 0

and recalling the normalization condition
∫

S4

xdµh =

∫

S4

(e4v − 1)x dµS4 = 0,

we have an expansion

e4v − 1 =

∞
∑

i=0

V iϕi

in terms of the basis functions ϕi, where V 0 = . . . = V 5 = 0.
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Also let v =
∑∞

i=0 viϕi. Note that for every i on account of Lemma
3.7, and by using Sobolev’s embedding H2(S4) →֒ Lp(S4) for every
p < ∞ together with the estimate (29) from Lemma 3.2, we obtain

4vi = 4

∫

S4

vϕi dµS4 =

∫

S4

(e4v − 1)ϕi dµS4 + O(‖v‖2
H2)

= V i + o(1)‖v‖H2 ,

where o(1) → 0 as t → ∞. In particular, we have

(72)
5

∑

i=0

|vi|2 ≤ o(1)‖v‖2
H2 .

Writing (18) as

PS4v = 2(Qh − QS4)e4v + 2QS4(e4v − 1),

from Young’s inequality and the uniform boundedness of v on one hand,
and by using Sobolev’s embedding together with (29) on the other, for
any ε > 0 we obtain

∫

S4

|PS4v|2 dµS4 ≤ C(ε)F2 + 36(1 + ε)

∫

S4

(e4v − 1)2 dµS4

≤ C(ε)e−δt + 242(1 + ε)

∫

S4

|v|2 dµS4 + o(1)‖v‖2
H2 ,

where o(1) → 0 as t → ∞. In terms of the coefficients vi, this implies
that

∞
∑

i=0

Λ2
i |vi|2 ≤ C(ε)e−δt + (Λ2

1(1 + ε) + o(1))
∞

∑

i=0

|vi|2.

Hence, if we choose ε > 0 so that

Λ2
1(1 + ε) < Λ2

6

and take (72) into account, we find

‖v(t)‖2
H4 ≤ C

∞
∑

i=0

(1 + Λ2
i )|vi|2 ≤ Ce−δt + o(1)‖v(t)‖2

H4

where o(1) → 0 as t → ∞. Hence

(73) ‖v(t)‖2
H4 ≤ Ce−δt,

as claimed.

iii) In view of (71) and (35) we have

‖dΦ(t)−1Φt(t)‖2
TidG ≤ C‖ξ(t)‖2

L∞ ≤ CF2(t) ≤ Ce−δt

for all t ≥ 0. Thus, we have smooth exponential convergence Φ(t) → Φ∞

as t → ∞. By (73) therefore, also g(t) = (Φ(t)−1)∗h(t) → g∞ =
(Φ−1

∞ )∗g0 and hence u(t) → u∞ exponentially fast in H4 as t → ∞,
where Q∞ ≡ QS4 . q.e.d.
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5. Prescribed Q-curvature

We now focus on the analogue of Nirenberg’s problem. Throughout
this section we assume that the given function f cannot be realized as
the Q-curvature of a conformal metric and hence the flow u(t) does not
converge in H4(S4) as t → ∞. Lemma 3.7 then is applicable and it
follows that g(t) concentrates near points p(t) of S4. As in [30], their
motion and the evolution of the concentration scale can be studied by
means of the spectral decomposition introduced in Section 4.1.

5.1. Dominance of B. We first observe that when the flow (u(t))
fails to converge, then the coefficients B(t) dominate the other Fourier
coefficients, and the flow shadows the solution of an ODE in a five-
dimensional space.

Lemma 5.1. For i = 1, . . . , 5 with error o(1) → 0 as t → ∞ there

holds

dBi

dt
= o(1)F2(t)

1/2.

Proof. The proof is analogous to the proof of Lemma 4.1 in [30] and
is included here only for completeness. We may argue for b instead of
B.

From the equations (18) and (68) we deduce the identity
∫

S4

xiQh dµh =
1

2

∫

S4

xi(PS4v + 6) dµS4 = 12

∫

S4

xiv dµS4 .

It follows that

dbi

dt
=

d

dt

∫

S4

xi(αfΦ − Qh) dµh

=

∫

S4

xi

(

d(αfΦ)

dt
+ 4vt(αfΦ − 3e−4v)

)

dµh

= αt

∫

S4

xifΦ dµh + α

∫

S4

xi(dfΦ · ξ + 4vt(fΦ − f(p))) dµh

+ 4

∫

S4

xivt(αf(p) − 3e−4v) dµh = I + II + III.

By (23), (37), and Lemma 3.7 the term

I = αt

∫

S4

xifΦ dµh = αt

∫

S4

xi(fΦ − f(p)) dµh

is bounded by

|I| ≤ C‖fΦ − f(p)‖L2F
1/2
2 = o(1)F

1/2
2 .
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Similarly, upon invoking (33) to write

II = α

∫

S4

xi(dfΦ · ξ + 4vt(fΦ − f(p))) dµh

= 4α

∫

S4

xiut ◦ Φ(fΦ − f(p)) dµh

+ α

∫

S4

xi divS4(ξe4v(fΦ − f(p))) dµS4

= 4α

∫

S4

xiut ◦ Φ(fΦ − f(p)) dµh − α

∫

S4

ξi(fΦ − f(p)) dµh,

in view of Lemma 3.7 and (35) we obtain the estimate

|II| ≤ C‖fΦ − f(p)‖L2(‖ut ◦ Φ‖L2 + ‖ξ‖L2)

≤ C‖fΦ − f(p)‖L2F
1/2
2 = o(1)F

1/2
2 .

Finally, again using (33), we have

III = 4

∫

S4

xivt(αf(p) − 3e−4v) dµh

= 4

∫

S4

xiut ◦ Φ(αf(p) − 3e−4v) dµh

+

∫

S4

xi(αf(p) − 3e−4v) divS4(ξe4v) dµS4

= 4

∫

S4

xiut ◦ Φ(αf(p) − 3e−4v) dµh −
∫

S4

(αf(p) − 3e−4v)ξi dµh

− 12

∫

S4

xidv · ξ dµS4 .

By Lemma 3.7 and (35) also this term then may be bounded by

|III| ≤ C(‖1 − e−4v‖L2 + |αf(p) − 3|)(‖ut ◦ Φ‖L2 + ‖ξ‖L2)

+ C‖v‖H1‖ξ‖L2 ≤ o(1)F
1/2
2 .

This concludes the proof. q.e.d.

From Lemma 5.1 we now obtain the analogue of Lemma 4.2 in [30].

Lemma 5.2. In the above notation for sufficiently large t there holds

F2 ≤ (1 + o(1))|B|2

with error o(1) → 0 as t → ∞.

Proof. Again we include the proof for completeness. Denote as F̂2 =
∑

i≥6|βi|2, so that, with error o(1) → 0 as t → ∞,

F2 = |β|2 + F̂2 = |B|2 + F̂2 + o(1)F2.
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Assuming that 2|B|2 ≤ F̂2 for sufficiently large t, similar to equation
(70) we obtain

G2 ≥ Λ6F̂2 ≥ 1

2
Λ6F2 = 60F2

and from Lemma 3.8 we deduce

d

dt
F2 ≤ −(36 + o(1))F2 ≤ −F2

for t large. As in the proof of Theorem 4.1 it then follows that the flow
(g(t)) converges exponentially fast to a metric of Q-curvature propor-
tional to f , contradicting our hypothesis in this section.

Hence there exist arbitrarily large numbers t1 ≥ 0 so that 2|B(t1)|2 >

F̂2(t1). Writing

F2 = (1 + δ)|B|2,

we have δ(t) ≥ o(1) and hence δ(t) > −1/2 for all t ≥ t0 and sufficiently
large t0 ≥ 0. In addition for sufficiently large t1 as above we have
δ(t1) < 4 and hence, by continuity, also δ(t) < 4 for all t sufficiently
close to t1. From Lemma 3.8 with error o(1) → 0 as t → ∞ we obtain

dδ

dt
|B|2 + 2(1 + δ)B · dB

dt
(74)

=
d

dt
F2 ≤ −

∑

i≥0

(Λi − 24 + o(1))|βi|2

≤ −96F̂2 + o(1)F2 = −
(

96δ

1 + δ
+ o(1)

)

F2,

where we again used the fact that Λi ≥ Λ6 = 120 for i ≥ 6. Since
Lemma 5.1 implies

∣

∣

∣

∣

B · dB

dt

∣

∣

∣

∣

≤ o(1)F2,

for t near t1 as above it follows that

dδ

dt
|B|2 ≤ −

(

96δ

1 + δ
+ o(1)

)

F2 = −(96δ + o(1))|B|2

and then

dδ

dt
≤ −(96δ + o(1)).

In particular, for sufficiently large t1 we obtain that δ(t) < 4 for all
t ≥ t1. The previous inequality then shows that δ(t) → 0 as t → ∞, as
claimed. q.e.d.
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5.2. Scaled stereographic coordinates. As in [30], for the follow-
ing detailed estimates it is convenient to introduce stereographic coor-
dinates. Let π : S4 \ {(0, 0, 0, 0,−1)} → R

4 denote the stereographic
projection from the south pole, given by

(75) π(x) =
(x1, x2, x3, x4)

1 + x5
, x = (x1, . . . , x5) ∈ S4.

Also denote its inverse as Ψ: R
4 → S4, with

Ψ(z) =
1

1 + |z|2 (2z1, . . . , 2z4, 1 − |z|2), z = (z1, . . . , z4) ∈ R
4.

For q ∈ R
4 and r > 0 define the conformal map Ψq,r : R

4 → S4

Ψq,r = Ψ ◦ δq,r,

obtained by the composition of Ψ with the affine linear map

δq,r : R
4 ∋ z 7→ zq,r = q + rz ∈ R

4.

There holds

∂Ψq,r

∂qi

∣

∣

∣

∣

q=0,r=1

=
∂Ψ

∂zi
=: ei, i = 1, . . . , 4,

and

∂Ψq,r(z)

∂r

∣

∣

∣

∣

q=0,r=1

=
4

∑

i=1

ziei(z), z ∈ R
4,

where the vector field e1 = ∂Ψ
∂z1 is given by

e1(z) =
1

(1 + |z|2)2 (2(1 − 2|z1|2 + |z|2),−4z1z2,−4z1z3,−4z1z4,−4z1)

= (1 + x5 − |x1|2,−x1x2,−x1x3,−x1x4,−x1(1 + x5)),

(76)

and with similar formulae for e2, e3, e4. In particular, we have

4
∑

i=1

ziei(z) = (x1x5, x2x5, x3x5, x4x5, |x5|2 − 1).(77)

For t0 ≥ 0 and t ≥ 0 close to t0, let

Φt0(t) = Φ(t0)
−1Φ(t).

Define q = q(t), r = r(t) so that

Φt0(t) ◦ Ψ = Ψq(t),r(t).
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The vector field ξ = (dΦ(t0))
−1 dΦ

dt

∣

∣

t=t0
=

dΦt0
dt

∣

∣

t=t0
then has the follow-

ing representation

ξ =
d

dt
(Φt0 ◦ Ψ)

∣

∣

t=t0
=

4
∑

i=1

∂Ψq,r

∂qi

dqi

dt
+

∂Ψq,r

∂r

dr

dt

=
4

∑

i=1

(

dqi

dt
+ zi dr

dt

)

ei,

where the derivatives of Ψq,r are evaluated at q = 0, r = 1. Letting

X =

∫

S4

ξ dµS4 = (X1, . . . , X5) ∈ R
5,

and using cancellations by oddness, from (76), (77) we obtain

(78) Xi =
dqi

dt

∫

S4

(1 − |xi|2) dµS4 =
32π2

15

dqi

dt
, i = 1, . . . , 4;

moreover, we have

(79) X5 = −dr

dt

∫

S4

(1 − |x5|2) dµS4 = −32π2

15

dr

dt
.

5.3. The shadow flow. Recall that by Lemma 3.7 the center of mass
S(t) of g(t) is given approximately by

p = p(t) =

∫

S4

Φ(t) dµS4 .

Similar to [30], Section 4.2, we now relate B (or b) to the gradient of
f at p̂ = p/|p|. For this we need the analogues of [30], Lemmas 4.3 - 4.8.
Since the proofs can be carried over with straightforward modifications,
we may be brief.

Given t0 ≥ 0, consider a rotation which maps p̂(t0) into the north
pole N = (0, 0, 0, 0, 1). Then Φ(t0) : S4 → S4 can be expressed as
Φ(t0) = Ψε ◦ π for some ε = ε(t0) > 0, where Ψε(z) = Ψ(εz) = Ψ0,ε(z)
in our previous notation. Therefore, in stereographic coordinates, Φ(t)
is given by the map

Φ(t) ◦ Ψ = Φ(t0) ◦ Φt0(t) ◦ Ψ = Ψε ◦ δq,r.

For the following lemma also recall that we extend f as f(p) = f(p/|p|)
for p ∈ S4 with |p| > 1/2. Moreover, for fixed t = t0 we write Φ = Φ(t0)
for brevity, with Φ = Ψε ◦ π.

Lemma 5.3. For some uniform constant C there holds

‖fΦ − f(p)‖L2 + ‖∇fΦ‖L4/3 ≤ Cε.
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Proof. For 1 < s < 2 we have

∫

S4

|∇Φ|sS4 dµS4 =

∫

R4

|∇Ψε|sΨ∗gS4

16 dz

(1 + |z|2)4

≤ C

∫

R4

|∇Ψε|sR4

dz

(1 + |z|2)4−s

≤ C

∫

R4

εsdz

(1 + ε2|z|2)s(1 + |z|2)4−s

≤ C

∫

B1/ε(0)

εsdz

(1 + |z|2)4−s
+ Cε−s

∫

R4\B1/ε(0)

dz

|z|8

≤ Cεs + Cε4−s ≤ Cεs.

Choosing s = 4/3 and observing that p is the average of Φ, by the
Poincaré-Sobolev inequality then we have

‖Φ − p‖L2 ≤ C‖∇Φ‖L4/3 ≤ Cε.

The claim now follows from the inequalities

|fΦ − f(p)| ≤ ‖∇f‖L∞ |Φ − p|

and

|∇fΦ| ≤ ‖∇f‖L∞ |∇Φ|.

q.e.d.

Lemma 5.4. For some fixed constant C there holds

‖v‖H4 ≤ C(F
1/2
2 + ‖fΦ − f(p)‖L2).

Proof. Expanding

v =
∞

∑

i=0

viϕi

as in the proof of Theorem 4.1, from (72) with error o(1) → 0 as t → ∞
we have

(80) |vi| ≤ o(1)‖v‖H2 , i = 0, . . . , 5.

We may write equation (18) in the form

PS4v = 2Qhe4v − 6

= 2((Qh − αfΦ) + α(fΦ − f(p)) + (αf(p) − 3))e4v + 6(e4v − 1).
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From (61), and Young’s inequality, then for any δ > 0 with a constant
C(δ) similar to the proof of Theorem 4.1 we find

∞
∑

i=1

Λ2
i (v

i)2 = ‖PS4v‖2
L2

≤ C(δ)(‖αfΦ − Qh‖2
L2 + ‖fΦ − f(p)‖2

L2) + 36(1 + δ)‖e4v − 1‖2
L2

= C(δ)(‖αfΦ − Qh‖2
L2 + ‖fΦ − f(p)‖2

L2) + (Λ2
1(1 + δ) + o(1))

∞
∑

i=0

(vi)2.

(81)

In view of (80), for small enough δ > 0 the last term on the right of
(81) may be absorbed on the left, and the claim follows. q.e.d.

We can now relate the components of b to the gradient and the Lapla-
cian of the function log f .

Lemma 5.5. With error O(ε) ≤ Cε and O(1) ≤ C as t → ∞ there

holds

bi = 4π2ε

(

∂ log f

∂xi
(p) + O(ε)

)

, i = 1, . . . , 4;

b5 = −4π2ε2(∆S4 log f(p) + O(1)|∇f(p)|2 + O(ε)).

Proof. With identical reasoning as in the proof of [30], Lemma 4.5,
from the equation −∆S4xi = 4xi and the Kazdan-Warner identity (12)
we eventually obtain

bi = α

∫

S4

xi(fΦ − f(p)) dµS4 + Ri
1 = C1αε

∂f

∂xi
(p) + Ri

2

for i = 1, . . . , 4, with

C1 =

∫

R4

16|z|2 dz

(1 + |z|2)5 =
4

3
π2

and with error terms bounded by

|Ri
1| + |Ri

2| ≤ Cε2 + C
(

‖v‖2
H4 + ‖αfΦ − Qh‖2

L2 + ‖fΦ − f(p)‖2
L2

)

≤ Cε2 + CF2 + C‖fΦ − f(p)‖2
L2 ≤ Cε2 + C|b|2

in view of Lemmas 5.2 - 5.4. Moreover, by Lemma 3.7 we have αf(p) →
3 as t → ∞.

Similarly, for i = 5, we obtain the expression

b5 = α

∫

S4

x5(fΦ − f(p)) dµS4 + R5
1 = −C2αε2∆S4f(p) + R5

2

with

C2 = −
∫

R4

8(1 − |z|2)|z|2 dz

(1 + |z|2)5 =
4

3
π2,
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and with error

(82) |R5
1| + |R5

2| ≤ Cε3 + C|b|2 + C‖fΦ − f(p)‖2
L2 .

As was the case in [30], again Lemma 5.3 needs to be improved in order
to arrive at the desired conclusion. By using the expansion

f(Ψε(z)) − f(p)(83)

= df(p) · dΨε(0)z +
1

2
∇df(p)(dΨε(0)z, dΨε(0)z) + Rf

ε (z)

= 2ε df(p)z + 2ε2∇df(p)(z, z) + O(ε3|z|3)
of f ◦ Ψε − f(p) to second order, however, as in [30] we find

‖fΦ − f(p)‖2
L2 =

∫

B1/ε(0)
|f(Ψε(z)) − f(p)|2 16 dz

(1 + |z|2)4 + O(ε4)(84)

≤ Cε2|∇f(p)|2
∫

B1/ε(0)

|z|2 dz

(1 + |z|2)4 + Cε4| log ε|

≤ Cε2|∇f(p)|2 + Cε4| log ε|.
From the above expressions for the components of b in particular we

obtain the estimate

(85) |b|2 ≤ Cε2|∇f(p)|2 + O(ε4)(1 + |∆f(p)|2),
which allows to bound the error terms

Ri
2 = O(ε2), 1 ≤ i ≤ 4,

and

R5
2 = O(ε2|∇f(p)|2) + O(ε3),

respectively, as desired. q.e.d.

Observe that Lemma 5.2 and (85) yield the bound

(86) F2 ≤ Cε2|∇f(p)|2 + O(ε4).

Lemma 5.6. As t → ∞ there holds

b =
8π2

15

(

dq1

dt
, . . . ,

dq4

dt
,−dr

dt

)

+ Cε2|∇f(p)|2 + O(ε3).

Proof. As in [30], proof of Lemma 4.6, equation (34) yields the iden-
tity

4b = 4

∫

S4

x(αfΦ − Qh) dµh = 4

∫

S4

xut ◦ Φ dµh =

∫

S4

ξ dµh = X + I,

where

I =

∫

S4

ξ(e4v − 1) dµS4 .
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The claim then follows from (78) - (79) and the estimate

|I| ≤ C‖v‖L∞‖ξ‖L1 ≤ C‖v‖H4‖ξ‖L∞ ≤ C
(

F2 + ‖fΦ − f(p)‖2
L2

)

≤ Cε2|∇f(p)|2 + O(ε3)

implied by (35), Lemma 5.4, (84), and (86). q.e.d.

The proof of the next lemma is identical with the proof of its coun-
terpart Lemma 4.7 in [30] and may be omitted.

Lemma 5.7. With error o(1) → 0 as t → ∞ there holds

dpi

dt
= (2 + o(1))ε

dqi

dt
, i = 1, 2, 3, 4,

and
d

dt
(1 − |p(t)|2) = (2 + o(1))(1 − |p(t)|2)dr

dt
.

Finally, ε and |p(t)| can be related in the following way.

Lemma 5.8. With error o(1) → 0 as t → ∞ there holds

1 − |p(t)|2 = (8 + o(1))ε2.

Proof. For t = t0 with the above choice of coordinates we find

1 − |p|2 = 1 − |p5|2 = (1 + p5)(1 − p5)

= (2 + o(1))

∫

S4

(1 − Φ5(t0)) dµS4

=

(

12

π2
+ o(1)

)
∫

R4

(1 − Ψ5
ε(z))

dz

(1 + |z|2)4

=

(

12

π2
+ o(1)

)
∫

R4

2|εz|2dz

(1 + |εz|2)(1 + |z|2)4

where o(1) → 0 as t → ∞.
With the estimate
∫

R4\B1/ε(0)

|εz|2 dz

(1 + |εz|2)(1 + |z|2)4 ≤
∫

R4\B1/ε(0)

dz

(1 + |z|2)4 ≤ Cε4

the claim follows from

lim
ε→0

(

∫

B1/ε(0)

|z|2 dz

(1 + |εz|2)(1 + |z|2)4

)

= lim
ε→0

(

∫

B1/ε(0)

|z|2 dz

(1 + |z|2)4

)

=
1

3
π2.

q.e.d.
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We summarize the results of Lemmas 5.5-5.8 in the following Propo-

sition. Below, we denote by
(

dp
dt

)T
the component of dp

dt which is tan-

gential to S4 at p/|p|.

Proposition 5.9.

i) As t → ∞ there holds

(

dp

dt

)T

= 15ε2 (∇ log f(p) + o(1)) ,

and

d

dt
(1 − |p|2) = 120ε4(∆S4 log f(p) + O(1)|∇f(p)|2 + o(1)),

with

1 − |p(t)|2 = (8 + o(1))ε2.

ii) As t → ∞ the metrics g(t) concentrate at critical points p of f
satisfying ∆S4f(p) ≤ 0.

Proof.

i) Without loss of generality we can assume p
|p| = (0, 0, 0, 0, 1). Then

the first statement is a direct consequence of Lemmas 5.5–5.8.

ii) From Lemma 5.8 and i) we obtain
∣

∣

∣

∣

d

dt
(1 − |p|2)

∣

∣

∣

∣

≤ C(1 − |p|2)2.

Hence we conclude that there holds

1 − |p(t)|2 ≥ C

t
,

which by Lemma 5.8 implies that

(87) ε2 ≥ C1

t

for all t ≥ 1, with a uniform constant C1 > 0. From i) we then deduce
the differential inequality

(88)
df(p(t))

dt
= ∇f(p)

dp

dt
≥ C2

t
(|∇f(p)|2 + o(1)).

Since the integral of t−1 is divergent, the flow (p(t))t≥0 must accumulate
at a critical point p of f . The proof of convergence of the flow and the
characterization ∆S4f(p) ≤ 0 of possible limit points p now again are
identical with the proof of Proposition 4.9 in [30]. q.e.d.

For future reference we also note the following result whose proof is
identical with that of Lemma 4.10 in [30].
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Lemma 5.10. As t → ∞ we have

Ef (u(t)) → −3 log f(p),

where p = limt→∞ p(t) is the unique limit of the shadow flow (p(t))
associated with (u(t)).

5.4. Existence results. We can now derive various existence results
for metrics of prescribed Q-curvature f .

Following [11], p. 237, for p ∈ S4, 0 < ε < ∞, in stereographic
coordinates with the point −p at infinity (so that p becomes the north
pole and we may continue to use our previous notation) we let Φp,ε =
Ψε ◦ π, so that Φp,ε ⇀ Φp,0 ≡ p weakly in H2 as ε → 0. Note that

Φp,ε = Φ−1
p,ε−1 = Φ−p,ε−1 for all p ∈ S4, 0 < ε < ∞. Letting

C∞
∗ = {u ∈ C∞(S4); g = e2ugS4 satisfies (16)},

in view of (26) we then obtain a map

j : S4×]0,∞[∋ (p, ε) 7→ up,ε = −1/4 log det(dΦp,ε) ∈ C∞
∗ .

Observe that Φp,1 = id and hence j(p, 1) = 0 for all p ∈ S4. Also let
gp,ε = e2up,εgS4 with gS4 = Φ∗

p,εgp,ε so that

(89) dµgp,ε ⇀
8

3
π2δp

as ε → 0.
Given a map u0 ∈ C∞

∗ , for t ≥ 0 we let u = u(t, u0) be the solution
of the flow (17), (19) at time t for initial data u(0) = u0, and we let
Φ(t, u0) be the family of normalized conformal diffeomorphisms such
that (23) holds for the pull-back metric

h = h(t, u0) = e2vgS4 = Φ∗g,

where we let g = g(t, u0) = e2ugS4 , Φ = Φ(t, u0), and with suitable
v = v(t, u0). Also let

(90) p = p(t, u0) =

∫

S4

Φ(t, u0) dµS4

denote the approximate center of mass of g(t, u0), so that, up to a
rotation, whenever p 6= 0 we have Φ = Φp,ε for some unique number
0 < ε = ε(t, u0) < 1. Note that the flow continuously depends on the
initial data u0 in any smooth topology.

Rescale the flow u(t, u0) by letting s = s(t) solve

(91)
ds

dt
= min{1/2, ε2(t, u0)}, s(0) = 0.

Note that (87) implies s(t) → ∞ as t → ∞. For 0 ≤ s < ∞ then we let
U(s, u0) = u(t(s), u0), P (s, u0) = p(t(s), u0). In view of Proposition 5.9
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for ε < 1/2 the rescaled flow satisfies (in stereographic coordinates)

(92)

(

dP

dt

)T

= 15ε2 (∇ log f(P ) + o(1)) ,

and

(93)
d

ds
(1− |P |2) = 15(1− |P |2)(∆S4 log f(P ) + O(1)|∇f(P )|2 + o(1))

with error o(1) → 0 as ε → 0. In the following we again denote (rescaled)
time as t, thus freeing the use of the letter s for other purposes; more-
over, for β ∈ R denote as

Lβ = {u ∈ C∞
∗ ; Ef (u) ≤ β}

the sub-level sets of Ef .

Proof of Theorem 1.2. Suppose by contradiction that f cannot be re-
alized as the Q-curvature of a conformal metric g on S4. As we shall
presently explain, the flow (17), (19) then may be used to show that
for sufficiently large β0 the set Lβ0

is contractible; moreover, the flow
defines a homotopy equivalence of the set N0 = Lβ0

with a set N∞

whose homotopy type is that of a point {p0} with cells of dimension
4 − ind(f, p) attached for every critical point p of f on S4 such that
∆S4f(p) < 0. We then obtain the identity (see e.g. [10], Theorem 4.3)

(94)
4

∑

i=0

timi = 1 + (1 + t)
4

∑

i=0

tiki

for the Morse polynomials of N∞ and N0 and a connection term with
coefficients ki ≥ 0, where

mi = #{p ∈ S4;∇f(p) = 0, ∆S4f(p) < 0, ind(f, p) = 4 − i},
as defined in (14). Equating the coefficients in the polynomials on the
left and right hand side, we obtain (15), which violates the hypothesis
in Theorem 1.2 and thus leads to the desired contradiction. By forming
the alternating sum of the terms in (15) - which corresponds to setting
t = −1 in (94) - we likewise obtain the statement of Theorem 1.1.

To proceed with the details of the proof we label all critical points
p1, . . . , pn of f so that f(pi) ≤ f(pj) for 1 ≤ i ≤ j ≤ n and let βi =
−3 log f(pi) = lims→0 Ef (upi,s), 1 ≤ i ≤ n. For notational convenience
only in the following we assume that all critical levels f(pi), 1 ≤ i ≤ n,
are distinct. We then can find a number ν0 > 0 so that βi − ν0 > βi+1

for all i. Theorem 1.2 now is immediate from the following result. q.e.d.

Proposition 5.11.

i) For any β0 > β1 the set Lβ0
is contractible.

ii) For any 0 < ν ≤ ν0 and each i the set Lβi−ν is homotopy equivalent

to the set Lβi+1+ν .
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iii) For each critical point pi of f with ∆S4f(pi) > 0 the set Lβi+ν0
is

homotopy equivalent to the set Lβi−ν0
.

iv) For each critical point pi of f with ∆S4f(pi) < 0 the set Lβi+ν0
is

homotopy equivalent to the set Lβi−ν0
with a sphere of dimension

4 − ind(f, pi) attached.

Proof.

i) Fix β0 > β1 = −3 log f(p1). For u0 ∈ Lβ0
, 0 ≤ s ≤ 1 then let

H(s, u0) = (1 − s)u0 + c(s, u0), where c(s, u0) is a suitable constant so
that H(s, u0) ∈ C∞

∗ . Clearly, the map H defines a contraction of Lβ0

within C∞
∗ . Moreover, by Lemma 5.10 for each such u0, 0 ≤ s ≤ 1 there

exists a minimal T = T (s, u0) ≥ 0 such that Ef (U(T, H(s, u0))) ≤ β0.
From Lemma 2.1 and our assumption on f we conclude that T depends
continuously on u0 and s. The map K : (s, u0) 7→ U(T (s, u0), H(s, u0))
then yields the desired contraction of Lβ0

within itself.

ii) Let 0 < ν ≤ ν0 be given. We claim there exists T > 0 with
U(T, Lβi−ν) ⊂ Lβi+1+ν . Suppose by contradiction that there exist Tk →
∞, uk ∈ Lβi−ν such that

Ef (U(Tk, uk)) > βi+1 + ν for all k.

By Lemma 2.1 there is a sequence tk ∈ [Tk/2, Tk] such that
∫

S4 |Qk −
αf |2dµgk

→ 0 as k → ∞, where gk = e2U(tk,uk)dµgS4
, k ∈ N, and where

Qk is the Q-curvature of gk. In view of Lemma 3.6, for sufficiently large
k the metrics gk will be arbitrarily close to round metrics concentrated
at the points P (tk, uk) ∈ S4 and Ef (U(tk, uk)) + 3 log f(P (tk, uk)) → 0
as k → ∞. Recalling (92) and (93), we may assume that the limit
P = limk→∞ P (tk, uk) exists and is a critical point of f . Lemma 3.6
then also yields convergence Ef (U(tk, uk)) → −3 log f(P ) as k → ∞.
Since we assume that Ef (uk) ≤ βi − ν, by Lemma 2.1 we have P = pi0

for some i0 > i and hence

Ef (U(Tk, uk)) ≤ Ef (U(tk, uk)) ≤ −3 log f(P ) + ν ≤ βi+1 + ν

for large k. The contradiction shows that there exists T > 0, as claimed.
For u0 ∈ Lβi−ν then let

T (u0) = inf{t ≥ 0; Ef (U(t, u0)) ≤ βi+1 + ν} ≤ T.

As in i), the number T (u0) continuously depends on u0. The map
(t, u0) 7→ U(min{t, T (u0)}, u0) then yields the desired homotopy equiv-
alence.

The remaining assertions iii) and iv) will be derived with the help of
the following lemmas. q.e.d.

Lemma 5.12. There exists an absolute constant C such that

||v||2H2 ≤ CE(v)
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for all v ∈ H2(S4) inducing a normalized metric h, satisfying (23) and

(26), and provided ||v||H2 is sufficiently small.

Proof. From the spectral analysis of the operator PS4 , (23), and (72),
as in the proof of Theorem 4.1 we obtain

E(v) =

∫

S4

(vPS4v + 12v)dµS4

=

∫

S4

(vPS4v + 3(e4v − 1) − 24v2)dµS4 + O(||v||3H2)

=
∞

∑

i=0

(Λi − 24)|vi|2 + O(||v||3H2) ≥
∞

∑

i=6

(Λi − 24)|vi|2 + o(||v||2H2)

≥ Λ6 − 24

Λ6 + 1

∞
∑

i=0

(Λi + 1)|vi|2 + o(||v||2H2),

proving the claim. q.e.d.

For r0 > 0 and any critical point pi ∈ S4 of f let

Br0
(pi) =

{

u ∈ C∞
∗ ; g = e2ugS4 induces a normalized metric(95)

h = Φ∗g = e2vgS4 with Φ = Φp,s for some p ∈ S4,

0 < s ≤ 1 such that ||v||2H2 + |p − pi|2 + s2 < r2
0

}

.

In the following estimates it will be convenient to use s, p, and v as
coordinates for u ∈ Br0

(pi), where g = e2ugS4 and h = Φ∗
p,sg = e2vgS4

as above. Moreover, since all critical points of f by assumption are
non-degenerate, we may use the Morse lemma to introduce coordinates
p = p+ + p− on TpiS

4 near pi = 0 so that

(96) f(p) = f(pi) + |p+|2 − |p−|2,

and we may refer to these coordinates in the definition of Br0
(pi) above.

Lemma 5.13. For r0 > 0 let u ∈ Br0
(pi) be represented by s, p, and

v as above.

i) We have

(97)

∫

S4

f ◦ Φp,s dµh = f(p) + s2∆S4f(p) + o(1)s‖v‖H2 ,

where o(1) → 0 as r0 → 0.
ii) In addition, we may bound

(98)

∣

∣

∣

∣

∂Ef (u)

∂s
+

6s∆S4f(p)

f(p)

∣

∣

∣

∣

≤ Cs2 + C(s + |p − pi|)‖v‖H2 .
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iii) Likewise, for any q ∈ TpS
4 there holds

(99)

∣

∣

∣

∣

∂Ef (u)

∂p
· q +

3 df(p) · q
f(p)

∣

∣

∣

∣

≤ Cs(s + ‖v‖H2)|q|.

iv) Finally, denoting as 〈·, ·〉 the duality pairing of H2 with its dual,

with a uniform constant c0 > 0 we have

(100)

〈

∂Ef (u)

∂v
, v

〉

≥ c0‖v‖2
H2 − o(1)s‖v‖H2 ,

where o(1) → 0 as r0 → 0.

Proof. To simplify the notation, let

A = A(u) =

∫

S4

f ◦ Φp,s dµh.

i) We have

A − f(p) =

∫

S4

(f ◦ Φp,s − f(p)) dµS4 + I,

where

I =

∫

S4

(f ◦ Φp,s − f(p))(e4v − 1) dµS4 .

Observing that |df(p)| ≤ o(1) → 0 as r0 → 0, by (84) the error term
may be bounded as

|I| ≤ ||f ◦ Φp,s − f(p)||L2 ||e4v − 1||L2 ≤ o(1)s||v||H2 ,

where o(1) → 0 as r0 → 0. To proceed, we may assume that p is the
north pole. Upon introducing stereographic coordinates and expanding
f as in equation (83) in the proof of Lemma 5.5 then we obtain

8π2

3
(A − f(p)) =

∫

B1/s(0)
(f(Ψs(z)) − f(p))

16 dz

(1 + |z|2)4

+ O(s4) + o(1)s||v||H2

=

∫

B1/s(0)

(

sdf(p)z + s2∇df(p)(z, z)
) 32 dz

(1 + |z|2)4

+ O(s3) + o(1)s||v||H2

= II + O(s3) + o(1)s||v||H2 .

By symmetry, the contribution from the linear term in the integral
vanishes, yielding

II = s2

∫

R4

∇df(p)(z, z)
32 dz

(1 + |z|2)4

= 8s2∆S4f(p)

∫

R4

|z|2dz

(1 + |z|2)4 =
8

3
π2s2∆S4f(p).

Dividing again by the volume of S4, we obtain the claim.
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ii) Observe that by (27) we have
(101)

Ef (u) = E(u) − 3 log

(
∫

S4

f dµ

)

= E(v) − 3 log

(
∫

S4

f ◦ Φp,s dµh

)

,

and

∂Ef (u)

∂s
= −3A−1 ∂

∂s

(
∫

S4

f ◦ Φp,s dµh

)

.

For convenience, we again may identify p with the north pole of S4. In
stereographic coordinates then for the unnormalized integral we have

∂

∂s

∫

S4

fΦp,sdµh =

∫

R4

(

∂

∂s
(f(Ψs(z)))

)

16 e4vdz

(1 + |z|2)4

=

∫

R4

(

∂

∂s
(f(Ψs(z)))

)

16 dz

(1 + |z|2)4

+

∫

R4

(

∂

∂s
(f(Ψs(z)))

)

16(e4v − 1)dz

(1 + |z|2)4
= I + II.

Expanding f as in equation (83), we obtain

∂

∂s
(f(Ψs(z))) = 2df(p)z + 4s∇df(p)(z, z) + O(s2|z|3).

By oddness then we find

I =

∫

R4

df(p)z
32 dz

(1 + |z|2)4 + 16s∆S4f(p)

∫

R4

|z|2dz

(1 + |z|2)4 + O(s2)

= 16s∆S4f(p)

∫

R4

|z|2dz

(1 + |z|2)4 + O(s2) =
16

3
π2s∆S4f(p) + O(s2).

On the other hand, the expansion to first order

∂

∂s
(f(Ψs(z))) = 2df(p)z + O(s|z|2) = 2(df(p) − df(pi))z + O(s|z|2)

yields the uniform estimate
∣

∣

∣

∣

∂

∂s
(f(Ψs(z)))

∣

∣

∣

∣

≤ C|p − pi||z| + O(s|z|2).

Thus we obtain the bound

|II| ≤ C(s + |p − pi|)
∫

R4

|e4v − 1|(1 + |z|2) dz

(1 + |z|2)4 ≤ C(s + |p − pi|)‖v‖H2 ,

and the claim follows from i).
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iii) For any q ∈ TpS
4 we may write

A
∂Ef (u)

∂p
· q + 3 df(p) · q = 3

∫

S4

(

df(p) − ∂(f ◦ Φp,s)

∂p

)

· q dµh

= 3

∫

S4

(

df(p) − ∂(f ◦ Φp,s)

∂p

)

· q dµS4

+ 3

∫

S4

(

df(p) − ∂(f ◦ Φp,s)

∂p

)

· q(e4v − 1) dµS4 = I + II.

Proceeding similarly to the proof of i) one finds

|I| ≤ Cs2|q|
and, on the other hand,

|II| ≤ Cs‖v‖H2 |q|.
iv) In the above notation we have

〈

∂Ef (u)

∂v
, v

〉

=

〈

∂E(v)

∂v
, v

〉

− 12A−1

∫

S4

fΦsve4vdµS4

=

〈

∂E(v)

∂v
, v

〉

− 12

∫

S4

ve4vdµS4 − I,

where

I = 12A−1

∫

S4

(fΦs − f(p))ve4vdµS4 + 12(A−1f(p) − 1)

∫

S4

ve4vdµS4

= II + III.

As in the proof of Lemma 5.12, with error o(1) → 0 as r0 → 0 we can
estimate

〈

∂E(v)

∂v
, v

〉

− 12

∫

S4

ve4vdµS4

=

∫

S4

(2vPS4v + 4QS4v) dµS4 − 12

∫

S4

ve4vdµS4

=

∫

S4

2vPS4v dµS4 − 12

∫

S4

v(e4v − 1)dµS4

= 2

∫

S4

(vPS4v − 24v2) dµS4 − o(1)‖v‖2
H2 ≥ c0‖v‖2

H2 − o(1)‖v‖2
H2

for some constant c0 > 0. Moreover, similar to the proof of i) we can
bound

|II| ≤ ||f ◦ Φp,s − f(p)||L2 ||v(e4v − 1)||L2 ≤ o(1)s‖v‖H2 ,

while from i) we find

|III| ≤ C|A − f(p)|
∫

S4

|v|e4v dµS4 ≤ C(s2 + s‖v‖H2)‖v‖H2 .

Combining these estimates, we obtain the claim. q.e.d.
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Proof of Proposition 5.11 (completed ). By Lemma 5.13, in the following
we will always assume that r0 > 0 and ν > 0 are chosen so small that
Br0

(pi) ⊂ (Lβi+ν0
\ Lβi−ν0

) and ν ≤ r3
0 < ν0. As shown in the proof of

ii), for any i and sufficiently large T > 0 we have U(T, Lβi+ν0
) ⊂ Lβi+ν ;

moreover, choosing a larger number T , if necessary, for any u0 ∈ Lβi+ν0

we either have U(T, u0) ∈ Lβi−ν , or U(t, u0) ∈ Br0/4(pi) for some t ∈
[0, T ].

Recall that by (101) for u = (s, p, v) ∈ Br0
(pi) we have

Ef (u) = E(u) − 3 log

(
∫

S4

f dµ

)

= E(v) − 3 log A = E(v) + βi − 3I

(102)

with A =
∫

S4 f ◦ Φp,s dµh as in the proof of Lemma 5.13 and with

I = log

(

1 +
A − f(pi)

f(pi)

)

=
A − f(pi)

f(pi)
+ O(|A − f(pi)|2).

Splitting

A − f(pi) = (A − f(p)) + (f(p) − f(pi)),

from (96) and Lemma 5.13 i) with error o(1) → 0 as r0 → 0 we obtain

A − f(pi) = s2∆S4f(p) + |p+|2 − |p−|2 + o(1)s‖v‖H2 .

Hence we find the expansion

(103) I ·f(pi) = s2∆S4f(p)+ |p+|2−|p−|2+o(1)(s2+ |p−pi|2+‖v‖2
H2).

With constants c1 > 0, C from Lemma 5.13 we conclude

Ef (u) ≥ βi + c1‖v‖2
H2 − C(s2 + |p − pi|2).

It follows that for u ∈ Lβi+ν ∩ Br0
(pi) there holds

(104) ‖v‖2
H2 ≤ C(s2 + |p − pi|2 + r3

0).

On the other hand, Lemmas 2.1 and 5.5 yield the bound

d

dt

∣

∣

t=0
Ef (U(t, u0)) ≤ −c2

|∇f(p)|2 + s2|∆S4f(p)|2
f(p)2

≤ −c3(s
2 + |p− pi|2)

with uniform constants c2, c3 > 0 for all u0 ∈ Br0
(pi). Hence for u0 ∈

Br0
\ Br0/4(pi) we have

(105)
d

dt

∣

∣

t=0
Ef (U(t, u0)) ≤ −c4r

2
0,

with a uniform constant c4 > 0. Since for any fixed r0 > 0 the length of
time needed for the flow U(t, ·) to traverse the annular region Lβi+ν ∩
Br0/2 \ Br0/4(pi) is uniformly positive, for sufficiently large T > 0 and
sufficiently small ν > 0 therefore we have

(106) U(T, Lβi+ν0
) ⊂ Lβi−ν ∪ (Br0/2(pi) ∩ Lβi+ν).
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Finally, let

T (u0) = min{T, inf{t ≥ 0; Ef (U(t, u0)) ≤ βi − ν}},
depending continuously on u0. The map (t, u0) 7→ U(min{t, T (u0)}, u0)
then defines a homotopy equivalence of Lβi+ν0

with a subset of Lβi−ν ∪
(Br0/2(pi) ∩ Lβi+ν).

Depending on the sign of ∆S4f(pi) we now proceed as follows.

iii) Suppose ∆S4f(pi) > 0. Given r0 > 0, for u = (s, p, v) ∈ Br0
(pi)

with

||u||2 := ||v||2H2 + |p − pi|2 + s2 < r2
0, p − pi = p+ + p−,

let the vector field X(u) be defined as

X(u) = (1, 0, 0).

Then let G(u, r) solve the flow equation

d

dr
G(u, r) = X(G(u, r)), 0 ≤ r ≤ r0,

with initial value G(u, 0) = u. Note that X is transversal to the
boundary of Br0

(pi) and G(u, r0) /∈ Br0
(pi); hence there is a first time

0 ≤ r = r(u) ≤ r0 such that G(u, r) /∈ Br0
(pi), and the map u 7→ r(u)

is continuous. Defining H(u, r) = G(u, min{r, r(u)}), we then obtain a

homotopy H : Br0
(pi) × [0, r0] → Br0

(pi) such that

H(Br0
(pi), r0) ⊂ ∂Br0

(pi), H(·, r)|∂Br0 (pi) = id, 0 ≤ r ≤ r0.

Moreover, by Lemma 5.13, letting ur = H(u, r), for 0 ≤ r ≤ r(u) we
have

d

dr
Ef (ur)

= dEf (ur) · X(ur)

=
dEf (ur)

ds
≤ −6s∆S4f(p)/f(p) + o(r0).

It follows that with a uniform constant c1 > 0 there holds

Ef (H(u, r0)) ≤ Ef (u) − c1r
2
0 for all u ∈ Br0/2(pi) ∩ Lβi+ν ,

and the right hand side will be smaller than βi−ν if r0 > 0 is sufficiently
small. Composing H with the flow (t, u0) 7→ U(min{t, T (u0)}, u0),
we then obtain a homotopy K : Lβi+ν0

× [0, 1] → Lβi+ν0
such that

K(Lβi+ν0
, 1) ⊂ Lβi−ν . Moreover, by our choice of r0 > 0, for 0 ≤ r ≤ 1

the map K(·, r) will be the identity map on Lβi−ν0
. For each u0 ∈ Lβi−ν ,

finally, let T0(u0) = inf{t ≥ 0; Ef (U(t, u0)) ≤ βi − ν0}. As in Step ii)
the numbers T0(u0) are uniformly bounded and depend continuously on
u0. Upon composing K with the flow (t, u0) 7→ U(min{t, T0(u0)}, u0)
we then obtain the desired homotopy equivalence of Lβi+ν0

with Lβi−ν0
.
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iv) From (102) and (103), with the constant c0 > 0 from Lemma
5.12 we conclude

Ef (u) − βi ≥ c0‖v‖2
H2 − 3s2f(pi)

−1∆S4f(p)

+ 3f(pi)
−1(|p−|2 − |p+|2) + o(1)(s2 + |p − pi|2 + ‖v‖2

H2),

(107)

where o(1) → 0 as r0 → 0. Assuming that ∆S4f(pi) < 0, we deduce
that there exists a number δ > 0 such that there holds

(108) s2 + |p−|2 + ‖v‖2
H2 < r2

0/4

for any u = (s, p, v) ∈ Br0
(pi)∩Lβi+ν with |p+| < 2δr0, provided r0 > 0

and ν ≤ r3
0 are sufficiently small.

Let η be the cut-off function given by η = (1 − (|p+|−δr0)+
δr0

)+, where

a+ = max{a, 0} for a ∈ R, and fix some number 0 < s0 < r3
0. (For

conceptual simplicity it would be best to choose s0 = 0, which, unfor-
tunately, is not permitted.) For 0 ≤ r ≤ 1, u ∈ Br0

(pi) then define
H0(u, r) = ur by letting

ur = (sr, pr, vr) = (rηs0 + (1 − rη)s, p+ + (1 − rη)p−, (1 − rη)v)

to obtain a homotopy H0 : Br0
(pi) ∩ Lβi+ν × [0, 1] → Br0

(pi) such that

H0(·, 1) maps the set {u ∈ Br0
(pi)∩Lβi+ν ; |p+| < δr0} to the set B+

δr0
,

where for 0 < ρ < r0 we denote as

B+
ρ := {u ∈ Br0

(pi); s = s0, p
− = 0, |p+| < ρ, v = 0}.

Note that the set B+
δr0

is diffeomorphic to the unit ball of dimension

4 − ind(f, pi). Moreover, letting

d

dr
Ef (ur) = η

(

dEf (ur)

ds
(s0 − s) − dEf (ur)

dp
p− − 〈dEf (ur)

dv
, v〉

)

=: ηD,

with the help of Lemma 5.13 for 0 ≤ r ≤ 1 we compute

D ≤ Cs0s + 6s2∆S4f(p)/f(p) − 3|p−|2/f(p) − c0‖v‖2
H2

+ o(1)(s2 + ‖v‖2
H2 + |p−|2 + s2

0).

By the choice of s0, for sufficiently small r0 > 0 the term D is negative
whenever s2 +‖v‖2

H2 + |p−|2 ≥ r4
0, and Ef (ur) ≤ βi +Cr4

0 < βi +ν, else.
It follows that H0(·, r) maps the set Br0

(pi) ∩Lβi+ν into itself for all r.
Finally, by (108) we have

H0(·, r)|∂Br0 (pi)∩Lβi+ν
= id, 0 ≤ r ≤ 1.

Now let the vector field X1(u) be defined as

X1(u) = (0, p+, 0)

and let G1(u, r) solve the flow equation

d

dr
G1(u, r) = X1(G1(u, r)), 0 ≤ r ≤ δ−1,
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with initial value G1(u, 0) = u. Again we note that X1 is transversal to
the boundary of Br0

(pi) within Lβi+ν ; moreover, for any u ∈ Br0
(pi) ∩

Lβi+ν with |p+| ≥ δr0 there holds G1(u, δ−1) /∈ Br0
(pi); hence there is a

first time 0 ≤ r = r1(u) ≤ δ−1 such that G1(u, r) /∈ Br0
(pi), and the map

u 7→ r1(u) is continuous. We extend this map continuously to the whole
set Br0

(pi) ∩ Lβi+ν by letting r1(u) = δ−1 whenever G1(u, r) ∈ Br0
(pi)

for all r ∈ [0, δ−1]. Defining H1(u, r) = G1(u, min{r, r1(u)}) = ur, by
Lemma 5.13 with a uniform constant c5 > 0 for sufficiently small r0 > 0
we have

d

dr
Ef (ur) =

dEf (ur)

dp
p+ ≤ −3|p+|2/f(pi) + Cr3

0 ≤ −c5r
2
0,

if |p+| > δr0. Hence, letting H be the composition of H0 with H1, for

sufficiently small r0 > 0 we obtain a homotopy H : Br0
(pi) ∩ Lβi+ν ×

[0, 1] → Br0
(pi) ∩ Lβi+ν such that

H(Br0
(pi) ∩ Lβi+ν , 1) ⊂ B+

r0
∪ (∂Br0

(pi) ∩ Lβi+ν)

and

H(·, r)|∂Br0 (pi)∩Lβi+ν
= id, 0 ≤ r ≤ 1.

Composing with U(T, ·), where T = T (u0) is defined in ii), and recalling
(105), (106) together with the fact that the length of time needed for
the flow U(t, ·) to traverse the annular region Lβi+ν ∩ Br0

\ Br0/2(pi) is
uniformly positive, for sufficiently small ν > 0 we have U(T, ∂Br0

(pi) ∩
Lβi+ν) ⊂ Lβi−ν . The proof can now be finished as in iii). q.e.d.

References

[1] Th. Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un
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lems, Birkhäuser, 1993, MR 0837186, Zbl 0609.58001.

[11] S.Y.A. Chang & P.C. Yang, Prescribing Gaussian curvature on S2, Acta Math.
159(3-4) (1987) 215–259, MR 0908146, Zbl 0636.53053.

[12] , Extremal metrics of zeta function determinants on 4-manifolds, Annals
of Math. 142 (1995) 171–212, MR 1338677, Zbl 0842.58011.

[13] , On a fourth order curvature invariant, Contemp. Math. 237 (1999)
9–28, MR 1710786, Zbl 0982.53035.

[14] , The inequality of Moser and Trudinger and applications to conformal

geometry. Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl.
Math. 56(8) (2003) 1135–1150, MR 1989228, Zbl 1049.53025.

[15] W. Chen & C. Li, Classification of solutions of some nonlinear equations, Duke
Math. J. 63 (1991) 615–623, MR 1121147, Zbl 0768.35025.

[16] Z. Djadli, E. Hebey, & M. Ledoux, Paneitz-type operators and applications, Duke
Math. J. 104(1) (2000) 129–169, MR 1769728, Zbl 0998.58009.

[17] Z. Djadli & A. Malchiodi, Existence of conformal metrics with constant Q-

curvature, preprint, 2004.
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